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The guided normal waves or modes in a waveguide would be perturbed if the boundaries of the
waveguide were to become statistically irregular or rough. Due to the accumulation effects of multiple
scattering along the entire propagation path, even very slight boundary irregularities can give rise to a
considerable influence on the propagation characteristics of the guided modes. In this paper, a way is
proposed to treat the scattering problem of guided waves in a waveguide with a slightly rough boundary
by applying the stochastic functional approach, which has been used successfully in the scattering prob-
lems of a plane scalar or electromagnetic wave in free space from various shaped random rough surfaces
and has been shown to be good for treating the multiple scattering effects. As a prototype of the basic
theory, only the planar structure of the waveguide and the Dirichlet boundary condition are considered.
The waveguide’s Green’s function is expanded in terms of the Wiener-Hermite stochastic functionals of
a homogeneous Gaussian random surface. Expressions for the modified normal waves (modes) of the
average or coherent Green’s function are given for the Dirichlet boundary condition. A mass operator is
derived which contains the information of the multiple scattering of the modes from the rough boundary
and can be evaluated in an iterative way. The second order statistical moment or the correlation func-
tion of the Green’s function is also considered. Some numerical examples are given for illustration. It
has been shown that our approach gives more thorough results than those given by the graphical or
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Feynman diagram method.

PACS number(s): 42.79.Gn, 02.50.Wp, 02.30.Sa, 84.40.Sr

I. INTRODUCTION

The scattering of waves from a random rough surface
is a problem not only of theoretical interest but also of
practical importance, and at the same time a very com-
mon physical phenomenon [1-3]. In view of its physical
phenomena, the problem can evidently be divided into
two groups [2]. The first group is related to interactions
of the waves in free spaces or half-spaces with rough sur-
faces; for instance, the scattering of radio waves from ir-
regular ground or sea surfaces, the wave diffraction from
a rough body, or the excitation of surface plasmons in
random metal surfaces. Common to all these situations is
that the wave field interacts with only a finite portion of
the surface, namely a single act of scattering from the
rough surface. Afterwards, the scattered waves travel in
free space and never again interact with the boundary ir-
regularities. For this reason, only slight distortions of the
wave field can be produced if the perturbation of the
boundary irregularity is small enough, and, as a result,
even the first Born approximation of perturbation theory
gives satisfactory solutions.
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The second group is related to interactions of guided
waves in waveguides or standing waves in resonant cavi-
ties with the rough boundaries inside. The natural exam-
ples of such waveguides are the earth-ionosphere cavity,
the underwater acoustic channel, tropospheric ducts, and
most importantly, the telecommunication waveguides
(for instance, optical fibers), where more or less random
deviations from the ideal (cylindrical) cross section can
occur. The obvious results from the effects of small
boundary roughness are to increase the attenuation and
to decrease the coherence of the modes [4]. Since the en-
ergy of the guided waves is mainly bounded in the
domain that contains the rough boundaries, the guided
waves will undergo again and again scattering from the
irregularities as they are propagating along the boun-
daries. Hence, the wave field at an observation point is
the sum of the waves multiply scattered by the irregulari-
ties distributed along the entire propagation path. Even
very slight boundary perturbations can give rise to con-
siderable distortions in the field pattern due to accumula-
tion effects, which, though they may be harmless in
short-distance propagation, have to be given more atten-
tion in long-distance (international) communication sys-
tems.

Considering such effects in the framework of conven-
tional perturbation theory, which respects only a single
act of scattering, is evidently not very fruitful, and has
been shown merely to have a narrow range of validity. It
is clear then that, for the effective treatment of the second
group of phenomena, the theories that are used have to
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allow summation of the waves that are repeatedly rescat-
tered by small irregularities of the boundaries. Bass,
Fuks, and co-worker [2,5,6] have studied in detail this
kind of problem by the graphical or Feynman diagram-
matic method in a way similar to the one in random
media, and given some important and significant results
such as the average Green’s function and its second order
statistical moment as well as the radiation transfer equa-
tions for the modes’ intensities. It can be seen that the
equations they used for solving the average Green’s func-
tion and the second order moment bear, respectively, a
very close resemblance to the Dyson equation and the
Bethe-Salpeter (BS) equation in the propagation theory in
random media [7]. Tolstoy [8,9] has investigated the
coherent modes and boundary waves in a rough-walled
acoustic waveguide, in a really different way. In his
theory, many small scatterers are used to model the
roughness elements of a rough surface, which is usually
called the boss model that was first proposed by Twersky
[10]. The most important result obtained by Tolstoy is
that the so-called boundary waves exist under certain
conditions in his boss model. DeSanto [11] has also treat-
ed the problem of an ocean waveguide with the randomly
rough upper boundary and obtained the equivalent im-
pedance for the rough boundary, based on the Green’s
function expression in which a so-called phase modula-
tion angular spectral term is introduced to describe the
rough surface interaction. It seems that his result can be
applicable to both small and large roughness, but on the
other hand, it is not in an explicit form. It should be not-
ed that the common point that all the methods men-
tioned above share is that the rough surface or boundary
can be made equivalent by a linear boundary condition
applied to a smoothed surface, namely the smoothed
boundary conditions, which have been widely used for
the first group of problems [12,13].

In the present paper, we intend to deal with the prob-
lem of propagation and the scattering of guided waves in
a waveguide with a slightly rough boundary by virtue of
the stochastic functional approach. The approach was
first introduced in the theory of propagation in random
media by the first author [14-16], and has been used suc-
cessfully to develop the scattering theory of a plane scalar
or electromagnetic wave from various planar [17-22], cy-
lindrical [23-25], and spherical [26] random rough sur-
faces with small roughness. In these works, the scattered
wave field is regarded as a stochastic functional of the
random surface that can be represented in the form of a
Wiener-Hermite expansion [27,28] in the case of a Gauss-
ian random surface, and a group-theoretic consideration
is made to determine the form of a stochastic wave field
based on the statistical homogeneity of the random sur-
face, which is analogous to the Floquet theorem for a
periodic boundary. A set of hierarchical equations for
the expansion coefficients is obtained from the boundary
conditions and can be solved by making use of the re-
currence relations and the orthogonality of the Wiener-
Hermite functionals. Various statistical characteristics of
the scattered waves, such as coherent and incoherent
fields, their differential cross section (the second order
moments) and angular distribution, etc., can be easily cal-
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culated. More importantly, it has been shown that the
so-called divergence difficulty in the common perturba-
tion theory, which is due to the multiple scattering in the
direction close to the planar random surface, is automati-
cally removed in our approach owing to the “‘stochastic
Floquet theorem” and the stochastic functional calculus
[19]. This means that the stochastic functional approach
is good enough for treating the multiple scattering effects,
and hence can be applied to the scattering problems of
the guided waves. In fact, the influence of the guided
waves on the scattering properties of a rough surface has
been considered in a previous paper [20] in which the ex-
citation of surface plasmons (modes) in an Ag film with
rough surface was studied for the incident plane wave
from outside.

We begin this investigation by examining a planar
waveguide with a bottom rough boundary, and consider
merely the Dirichlet boundary condition for the Green’s
function. There is no mathematical or physical difficulty
in extending the theory developed in this paper to cases
of more complex geometry and other kinds of boundary
conditions. In this sense, the present paper is a prototype
of the basic theory. We have ordered the paper as fol-
lows. In Sec. II, a stochastic representation of the
Green’s function in the planar waveguide is presented in
terms of the complex Wiener-Hermite functionals of a
homogeneous Gaussian random surface. Then, in Sec.
IT1, we determine the Wiener expansion coefficients ac-
cording to the Dirichlet boundary condition, and obtain
the modified normal waves of the average or coherent
Green’s function by the residue evaluation. Further-
more, the second order statistical moment or the correla-
tion function of the Green’s function is discussed in Sec.
IV, especially touching on the intensities of the guided
modes. Finally, some numerical examples and brief con-
clusions are given in Sec. V.

II. STOCHASTIC REPRESENTATION
OF GREEN’S FUNCTION

Let us consider a waveguide with planar structure, as
shown in Fig. 1. For an easy comparison with others’
works [2,5,6], we also deal with the Green’s function of
the waveguide. If both the boundaries are smooth or un-
perturbed, then the unperturbed Green’s function
G,(R,R’) can be expressed as [5,29]

Go(R,R")=G,l(r,1',2,2")

=(2—71T)2fdkoexp[il.o-(r—r')]Go(lo,z,z') ,

(1)

where r=(x,y) and r'=(x’,y’) are the two-dimensional
radius vectors of the field point R=(x,y,z) and the
source point R’=(x’,y’,z'), respectively. A, and its am-
plitude or absolute value A,=|A,| denote the wave vector
and the propagation constant. G((A,,2,2’) in Eq. (1) can
be regarded as the two-dimensional Fourier transform of
the Green’s function G,(R,R’) and satisfies the inhomo-
geneous wave equation
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z=a

z=f(x,y)

FIG. 1. A planar waveguide with the bottom rough bound-
ary.

2
L kel A2

Gy(Apz,2 ) =—8(z—2"), ()
dz

where k is the wave number in free space and €(z) is an
appropriate profile function standing for the material
property filling the inside of the waveguide. According
to the Sturn-Liouville theory for the ordinary differential
equation with certain boundary conditions, the solution
of Eq. (2) can be constructed as

Go(Agyz,2' ) =@ (A2  )Py(Agyz . )/ Wi(hpz'),  (3)

where z . and z, denote the lesser and greater of z or z’,
respectively, and in the case under discussion 0=z, z' <a.
The functions ®,(Ay,z . ) and ®,(Ay,z ., ) are the linearly
independent solutions of the homogeneous equation

d2
——+kde(z)—A3
de 0 0

®(Ag,z)=0 (4)

and satisfy the boundary conditions at the bottom and
top boundaries, respectively. In the case of the Dirichlet
condition, they are ®,(1;,0)=0 and P,(Aa)=0.
W (Ao, 2) =P (Ap, 2)P5(Ag,2) — P (A, 2)P(Ag,2) is the
Wronskian determinant, in which the primes denote the
first derivative with respect to z: ®'(A,z)=d®(A,z)/dz.
It has been well known [29] that W (A,,z) is not depen-
dent on z and is really the function of A, only, so if we
set z=0 and have ®;(A,,0)=0 in mind, we then reduce
to W(hg)=W (rp,2)=W (A, 0)=D}(Ag,0)P,(A,0)
=®(Ag)P,(Ay) [we will use P(A,) to denote P(A,0)
hereafter], which is in the same form as that used in [2,5].
It should be noted that the nulls of W () stand for the
propagation constants of the normal waves or modes in
the waveguide. Hence, by using the residue theorem to
evaluate the integration of Eq. (1), we can obtain the ex-
pression of Gy(R,R’) in terms of the summation of the
normal waves.

We now convert to consider the rough-walled
waveguide, in which for simplicity only the bottom
|
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boundary is assumed as a random rough surface ex-
pressed by z =f (x,y), where f (x,y) is a random function
with the mean { f(x,y))=0. If f(x,y) is a homogeneous
Gaussian random function, then as shown in previous pa-
pers [17-26] we have the spectral representation of
f(x,y) by a Wiener integral as

z=f(x,y)=f(1)= [ expliA-T]F(MdB(A),  (5)

where dB(A) denotes the complex Gaussian random
measure in two-dimensional space, namely, a complex
random variable with the properties

(dB(L))=0, dB*(A)=dB(—A),
(dB(A)dB*(A'))=8(A—A')dAdA’,

(6)

where the angle brackets { ) denote the probabilistic
average over the sample space of the random functions or
variables, and the asterisk, the complex conjugate. From
Eq. (5) and by making use of Eq. (6), we have the follow-
ing expressions for the correlation function:

R(r)={(f(r+r1y)f(ro))
= [ explir-r]|F(A)|%dA 7)

and the variance that describes the random surface
roughness

o*=R(0)= [|[F(M)|%dA, (8)

where we have used the relation F(A)=F*(—A).
|F(A)]? is called the power spectrum of the random sur-
face. |F(A)|?=0 and then o¢?=0 corresponds to a
smooth or flat boundary.

It is obvious that the Green’s function will be per-
turbed and become random, as the bottom boundary is
statistically a rough surface. If the perturbation is slight,
the perturbed Green’s function can then be written as

G(R,R)=G,(R,R)+G,(R,R), 9)

where G,(R,R’) is introduced to represent the effect of
the rough boundary and can be expressed as a stochastic
functional of the random surface function f(x,y). Fur-
thermore, if we suppose that f(x,y) is a homogeneous
Gaussian random function, then just as has been done in
previous papers [17-26], we can expand, in view of the
fact that the random wave field is the eigenfunction of a
shift operator D* (defined by a translation in the x-y
plane and a measure-preserving transformation in the
sample space; see [24] for details) with the eigenvalue
exp[iA-r] and the form of Gy(R,R’) in Eq. (1), the scat-
tered Green’s function G;(R,R’) in terms of the Wiener-
Hermite functionals in the following manner:

G,(R,R")= 7217 fdkoexp[iko-(r—r')]<l>2(}\o,z)<l>2(k0,z')Ao(lo)
T

-!-12
(27) n=1

X ®,y(1,,2)Py( Ao,z ) A, (Agy A, . . .

S [ [dhgexpli(Agth,+ -

“r A r—iAgr]

, AR, (dB(A,),dB(A,),...,dB(A,)), (10)
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where h,() denotes the nth order complex Wiener-
Hermite differential, which is to be understood as a gen-
eralization of the Hermite polynomial (note that k,=1),
the integral in Eq. (10) represents the n-tuple complex
Wiener integral, and the coefficients A4, are the unknown
integral kernels to be determined by applying the bound-
ary condition on the rough boundary. The parameter
N, =|Ag+A;+ --- +4,| is the length of a composed
wave vector 7, =Ay+A;+ --- +A,, which originates
from the scattering from the rough boundary. The
reason for choosing ®,(z) rather than ®,(z) is to satisfy
the boundary condition at the flat boundary z =a, and
the reason for choosing ®,(z') is to make G,(R,R’) satis-
fy a homogeneous wave equation (source free). Equation
(9) together with Eq. (10) can be regarded as a stochastic
representation of the Green’s function in the waveguide
under discussion, which is the stochastic functional of a
homogeneous Gaussian random surface.

On the other hand, by averaging Eq. (10), we can also
express the Green’s function as the sum of two parts,
namely, the coherent and incoherent part. The coherent
or average Green’s function (the first-order statistical mo-
ment) is given by
G.(R,R)=(G(R,R))=Gy(R,R)+G,(R,R"), (11)

dB(Mh,(dB(A),dB(A,),...,dB(A,))
=h, (dB(A),dB(A,),dB(L,),...,dB(A,))

+ 3 h,_((dB(1)),...,dB(A;,_),dB (A, ), ...,dB(A,))8(A+A,)dAdA,

i=1

(h (@B ), ... ,dB(A; Dh,(dB(R; ), ... 2dB(X; )))=8,,8%dA; - -dA; dh; - dA,

where §,,,

8(A; +As), i =(iysig, . 0dy), J=(jpsfs -
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where G o(R,R’) is the first term in Eq. (10) and
represents the contribution from the coherent scattering.
The incoherent Green’s function G;,.(R,R’) is then ob-
tained by subtracting G.(R,R’) from G (R,R’), that is,
the second term (the sum part) in the right hand side of

Eq. (10).

III. MODIFIED NORMAL WAVES

To investigate the Green’s function from Egs. (9) and
(10) in detail, we have to determine the Wiener expansion
coefficients A4, by applying the boundary condition at the
random boundary z = f (x,y). For simplicity and only to
demonstrate the usefulness of the stochastic functional
approach, we confine ourselves here to dealing with the
case in which the random boundary is slightly rough,
that is, o2 << 1; then the boundary condition for the Diri-
chlet problem can be approximated as

=0.

z=0

aG
G+t+f 32 (12)

Substituting the expressions of G, and G, into Eq. (12),
and making use of the recurrence formula and the ortho-
gonality relation for ﬁ,, [17-26,30],

(13)

(14)

Im ?

is Kronecker’s delta and 8]; denotes the sum of all distinct products of n delta functions of the form
»Jm), all i, and j, appearing just once in each product, we consequently

obtain a set of hierarchical equations for the Wiener coefficients as follows:

m=0: ®,(Ag)do(Ao)+ [ ®3(n,)4;(AgA)F*(X)dA, =0, (15)
m=1: ®y(1;) 4;(Ao, )+ [D(Ag) /W (Ag)+ Do) Ao(Ag) IF (A))+2 [ @5(m,) A,(Ag, Ay, A,)F*(A))dA, =0, (16)
m =2 @y(1;) A5 (A, Ay, Ap) + [P5(m) A (Ao, A F (Ay)+ {@5(mi1) A4V (Ao, Ay)F (A1)} ]/2
+3 [ @5(1;) 45 (Ag A Ay ADF*(A)dA; =0,  (17)
n—2 X X
m=n—1: Qyn,_)A, 1 +[®)n, )4, ,F(A,_)/(n—1)+ 3 {[@n\" ) A ,F(A)]/(n —1)}
i=1
+n [ ®y(n,) 4, (AAy, ..., A, )F*(A,)dA, =0, (18)
n—1
m=n: ®yn,)A4,+[Pyn,_ )4, 1 F(A,)]/n+ T {[Pyn_ )AL F(A;)]/n}
i=1
+n+1) [ @5, 1 1) Ay 11 (Agy - oy Ay 4 JF*(Ay 4 )dA, 4, =0,  (19)

where 7)) and 4. have the same expressions as 7,, and 4,,, except for A;, which is replaced by A,, , ;. By neglecting
4,41 in Eq. (19), A4, is obtained in terms of 4, _,(A4,” ;). Furthermore, by inserting the so-obtained 4, into Eq. (18),
in principle, 4, _,(A4".,) can be given in terms of A, (A" ). Unfortunately, we find that in this case Eq. (18) be-
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comes an integral equation because of the existence of A,(,‘:’_l, and it is difficult to get the explicit solutions for the 4,,’s.
On the other hand, however, if we discard at first the 4 "’s (which merely represent some of the higher-order interac-
tions) in each order of equations (the parts inside { }), we can obtain a set of iteratively solvable equations for 4,,’s in

an explicit form. The final approximate solutions are
M 1]0)

Ao G A Dohg)— DY AM ()] .
[©(Ag) /W (Ag)+®)(Ag) Ay ho)] —F(A,)
T T @y — By )M ()] V= @) — Dy )M (o) 1151, — D M ()] @D
Oy, A, FA 'S, ont ) AD F(R,) /n
A,=— = (n>2), (22)
[®y(n,)—P3(n, )M (7,)]

where the mass operator M (7, ) satisfies the iterative
equation

D50, DIF (A, )R, 1
(@1, 41) = PN, )M (7, 41)]

in which M (7, ) in the denominator of the integral
kernel reflects the contributions from higher orders.

By substituting 4, of Eq. (20) into Eq. (11), it is easy to
show that the coherent or average Green’s function has
the following expression (notice that 7,=2,):

M= [ , (23)

GC(R,R')=(—2-:¥fdloexp[ilo-(r——r')]
Wiz gz, )
W) [ @, Ag) — Dy Ag)M (Ag)]
(24)

’

with
W (A, 2) =[Dy(Ag) — PHUAGIM (Ag) 1P (Ag,2)
+ DA M (Ag)P,( Ay, 2) (25)
satisfying the “impedance” boundary condition at z =0
W, (Ag) =W (A)M (Ay) =W (Ay)M (Ay)
=Q (AP, (AIM () . (26)

J

V(A0 2) =Dy (Ao { [P Ao)¥1(Ag, 2) — 1 (Ag)Po(Ag,2) | — M

f

In the derivation of Eq. (24), we have used the relation
W (Ay)=®}(Ay)P,(A,) for the Dirichlet boundary. It can
be noted that Eq. (24) is exactly in the same form as Eq.
(2.11) given by Bass, Freulicher, and Fuks [S]. As point-
ed out in [5], by analogy with the “smooth” waveguide, it
seems natural to get the normal waves or modes of the
coherent field by evaluating the residues on the roots of
the denominator factor in Eq. (24):

which indicates that the dispersion equation of the origi-
nal smooth or flat waveguide ®,(A,)=0 has been
modified due to the influence of the bottom rough bound-
ary. It should be pointed out that, as can be seen in Eq.
(26), it seems that Wi(A,) involves the unperturbed
dispersion factor ®,(A;). However, with ®,(15)=0 in
mind, it is convenient to rewrite

®,(Apyz) =Py Al (hgy2) —P1(Ag)Po( R 2) ,  (28)

where ¥,(Ag,z) [¥(A))=1(Ay,0)] is also a solution of
Eq. (4) and independent of ®,(A,,z). Inserting Eq. (28)
into Eq. (25), we then obtain

(00, 2)[ @A) (Ao, 2) =Y (Rg)Py( A, 2) ]} (29)

which means that, in Eq. (24), ®,(X,) in the denominator can be cancelled. Thus we need merely to evaluate the residue
contributions from the nulls of Eq. (27) to get the normal waves in Eq. (24), just as was done by Bass, Freulicher, and

Fuks [5]. For the isotropic rough surface, we have

F(AM)=F(), M(M)=MA) ;

(30)

then the expression of the modified normal waves from Eq. (24) is

EnH{)I)(Bn ll'*‘l'" )\yl(ﬁn’z < )¢2(Bnrz >)

GC(R,R’)=éZ

d,

Wi(B,) =2 [@,(hg)— By )M (o)) s

(31)

n
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with B, standing for the roots of the dispersion equation
(27), namely the perturbed propagation constants of the
respective modified normal waves. If the perturbation is
small enough, the perturbed propagation constants can
be regarded as small corrections to the unperturbed ones:

M(2,)

%, =By B =04B.) | 3, 0g1 /g

) (32)
A'0=Bn

where B, is the root of ®,(A,)=0 and stands for the un-
perturbed propagation constants.

It is not difficult to demonstrate that, if we neglect
M (7)) in the denominator of Eq. (23) for n =0, our mass
operator M (A,) then corresponds to the one given in [5]
under the Bourret approximation (the first-order approxi-
mation). However, it is clear that in our approach it is
easy to include the contributions from the higher-order
terms, by using Eq. (23) to evaluate M (A,) in an iterative
way, and obtain better values. Otherwise, although the
mass operator used by Bass and co-workers [2,5] is also
represented by an infinite series, in their method it is
difficult to get the analytical expressions for the higher-
order terms, or even for the second-order term.

IV. SECOND-ORDER STATISTICAL MOMENT

The second-order statistical moments of a random
wave field or the Green’s function are obviously related
to power characteristics such as intensity, energy flux,

|

7c=(2—1)—4f [ drgdhexplitg-(r—r)—iAy(rg—1p)]
'

W, (Ag,2 . )Py(Ag,z 5 )
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etc. Bass and co-workers [2,6] obtained the Bethe-
Salpeter (BS) type equation for the correlation function of
the Green’s function by introducing the so-called intensi-
ty operator. However, the BS equation would have been
a poor instrument for treating the problem of scattering
from the irregular surfaces because of its mathematical
complexity. It is very difficult to get a general solution of
the BS equation, even with the formally known intensity
operator. Moreover, with the simplest form of the inten-
sity operator, the BS equation can be solved only in some
extreme cases and for specific correlation functions of the
perturbations. In contrast to their method, one can see
that with our approach, it is very convenient to obtain
the second- or even higher-order field’s statistical mo-
ments of the Green’s function because of the orthogonal
properties of the Wiener-Hermite differentials.

The correlation function or the second-order statistical
moment of the Green’s function is defined by

J(R,R', R, R)=(G(R,R")G*(Ry,R}))
=97c+‘7inc
=(G.(R,R")){(G*Ry,R}))

+ (G, (R,R")GE.(Rp,Rp)) . (33)

According to the results given in the preceding sections,
it is easy to obtain

\III(A-’Oazo< )q)2()"£)720> )

W (Ag)[ Do Ag) — Dy(A)M (Ag)]

Tine= (2 " 2 [ [dagdrs [ [drda;-

X{h,(dB(A,),...,dB(A,)h}(dB(A)), ...
X D(1,,2)P( Ao 2" )P0, 20 )P(Ap,20)

1
(2 * 5

x fdkl ¢t
X(p!)IA (AgyAys - - -
+A 111,

dA, exp[i(A;+A,+

where 7, =1, + AptAl+
respect to its arguments (A,A,, . .

Eq. (14) can be regarded as &, ~ (p ')8(1.1 ADB(A,—A) -

,dB(A)))) A4, (AgyAy, . . -

,Ap)|2<I>2(17p,z)<l>2(}»0,z')<I>2(n;,zo )D,(Ag,20)

- +A, in Eq. (35) and 7, =
tion of Eq (36) from Eq (35) we have used the symmetry of the Wiener kernal 4 (AO,LI, cey

(34)
WAL [ Do(Ay) —DH(A)M (A)]

-+ [ [dar,dA; expli(m, 1—m,-r')—i(Ago—Apry)]

A ATAGAY .. A

(35)

z J [ drgdrgexplidg-(r—r')—iky(ro—rp)]

C+A,)-(r=1)]

(36)

Agt+A,+ -+ +A, in Eq. (36). For the deriva-

A,) [see Eq. (22)] with

»A,) (invariant under exchange of the arguments) Based on such symmetry, 8; in
“8(A, —A,).

It is too complicated to glve the explicit or meamngful express1ons for a general waveguide, so for simplicity we will
restrict ourselves to the case in which the waveguide is homogeneous in the y direction (mdependent of y, so it is only a

one-d1mens1ona1 propagation problem) and with e(z)=const, and in this case ®,(7,z)= sin[

V' k?—nXz —a)] (where

k*=k2e). Furthermore, although we can deal with the case of R;#R and Rg#R', we will merely consider the case of
R0=R and Ry=R’ because the value I (R,R’)=J(R,R',R,R’) evidently means the intensity at R with a source at R’.

Thus, from Egs. (34) and (35), we can obtain
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I.=(G.(R,R")){G*R,R"))
1 ’ . ’ ’
=(27)2ffdkod)uoexp[t(lo—ko)(x —x")]

sin(hyz . )sin[hy(z, —a)] sin(hgz . )sin[hy(z, —a)]

: (37)
ho[sin(hga)+hg cos(hga)M (Ag)] hy[sin(hja)+h{ cos(hya)M (Ag))
Iinc=(Ginc(l{’l{’)Gi‘lflc(ll’lll)>
1 hd ’ ’ ’
=57 Elffdkodloffdk,dkl---ffdlpdkp
iy
p
Xexp[i(n, —mn,)x —i(Ag—Ag)x'] [T [F(A,)F*(A})8(A; —1})]
j=1
. p—1 p—1
sin[h,(z —a)]sin[hy(z'—a)] ] h; cos(h;a) sin[h,(z —a)]sin[hy(z'—a)] [T A, cos(h/a)
X J=1 L= , (39

p p
I1 {sin(h;a)+h; cos(h;a)M (n;)} {sin(hja)+h; cos(hja)M (7))
s J j J J J
j= j=0

where hj=\/k2~17]2~, hj=\/k2~(77})2, and m;=AotA,+ -+ +A4;, nj=Ag+A{+ -+ +A). It should be noted that
we have written Eq. (38) in the form of Eq. (35) rather than Eq. (36) for deriving approximation results similar to those
of Bass and co-workers [2,6], as shown below. It is not easy to give simpler expressions from Eq. (36), particularly for
the higher-order terms and in the case where there are many propagation modes in the waveguide, but we believe that
Eq. (36) is better for carrying out the numerical calculations to get more rigorous results, owing to the reduced orders of
integration in it. By making use of the following relations:

S(A— M———f exp[i (A—A)x]dx (39)
and
f(n)exp[£inx] . yooq, .
d e ~(i27) (B,)exp[xiB,x —v,x10(nx)  (40)
f nsin(\/kz—n2a)+\/k2—n2cos(\/kz—nza)M(n) ,,=2_N 1B,al p(£ib V¥l

to evaluate the residue contributions from the denominator factors in Egs. (37) and (38), we finally obtain

N N sing,z sing;z sing,z’ sing;z’

I ~
¢ n=2~1v 1=2—N a?|B,B;|

N N sing,zsing;z =

[~ T J 45U (42)
e ng—N1=—N 02|ﬁn/31|1/2 :gl "

gu(x —x'), 41)

" N N sing, z'sing, z" - o
I’ = P _.._'—‘-wnvlw‘liz ...w‘l"l‘l
inc __E—N Vlz #I.:‘E—N VEN \BHI.BV'.“/z 77 By MMy
X fdxl fdxz s fdx,-g,,,(x —X, )gum(xl —Xx,) 'g#l_vi(x,- —x'), (43)
I
and g,uv(x)=expli (B,—B,)x —(y,+7,)x]0(ux)0(vx) ,
wo— 2_‘n' qp,qp'qqu' (45)

F(B'[[_B‘u')F*(BV—BV') ’

et |

where O(x) is the step function [O(x)=1 if x >0, other-
(44) wise O(x)=0], q,=(nm/a)=k cosf, (we have also
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used  sing,a=0 in the  derivation), and
B,,=sgn(n)\/ k2—q2=sgn(n)k sin@, (see Fig. 1 for the
meaning of 0, ) are, respectively, the transverse eigenval-
ue (wave number) and the longitudinal propagation con-
stant of the nth mode (with the positive and negative
values of n denoting the forward and backward modes,
respectively) in the unperturbed waveguide; N denotes
the number of propagational modes
[Nw/a <k <(N +1)7/a]. The factor y, is the imagi-
nary part of 88, [that is, ¥, =Imdp,, see Eq. (32) for the
definition of 88, ] and means physically the wave damp-
ing arising from the incoherent transformation of every
normal mode into other modes (including both the for-
ward and backward directions). From Eq. (32), we get
the expression of 7, for the case under discussion as

N

Y= 2

m=—N

=4 3w
2

42dm
|B,B.m|

v

a2

F(B,—B,)I?

(46)

It can be found that Egs. (41)-(43) merely give the
field’s intensity rather than the modal intensity. To ob-
tain the summation of intensity of each mode, Bass et al.
[2,6] have used an average procedure by integrating
I(R,R’) over an interval .L (the representative scale
length of the irregularity-caused processes over which the
mode conversions occur significantly) to exclude its *“rap-
id” oscillations due to interference between the modes
(shown by the factor exp[i(B,—B;)x] in Egs. (41) and
(43) when n#!). For reaching such averaging, here we
only need to allow in Egs. (41)-(43)

8n(X)=8p(x)8, = exp(—2y,x)O(nx)5,; . 47)

Comparing the so-obtained I, and I, with those given in
[6], we find there are more terms in our results. These
terms are the ones in Eq. (43) with y1¢v =12,...,i
They reflect the contributions to the 1ntens1ty of the nth
mode coming from the interactions between the different
modes excited by the same point source at R’ and seem to
correspond to a portion of the cross-connected parts of
the Feynman diagram in the graphical method [see Eq.
(37.2) in [2]]. Nevertheless, because of the oscillating
property of the factor, exp[(Bﬂj —ij )x], with p;7v; in
the integral kernels of Eq. (43), these terms are much
smaller than the terms with p;=v;, so we can usually
neglect them for obtaining simpler results. Thus, Egs.
(41)-(43) will be reduced to the analogous form of Eqgs.
(1.7) and (1.8) in [6]; then we can similarly get the intensi-
ty transfer equation as

dI,
sgn(n)———z'y,,I,,+ 2 wrnT (48)
m=—N

N — —_—
= X WnlIn—I,),

m=—N

(49)

where I, denotes the intensity of the nth propagation
mode. Equation (49) is directly obtained by inserting Eq.
(46) into Eq. (48). It should be pointed out that Eq. (1.11)
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in [6] seems to have no meaning according to Eq. (2.22) in
[5]. In fact, from Eq. (46) it is seen that the so-called op-
tical theorem (the energy conservation law—no “real”
energy dissipation occurs in the system but just the ener-
gy conversions between the modes) is automatically
satisfied under the approximation considered now.

V. NUMERICAL EXAMPLES AND CONCLUSIONS

For a numerical calculation we conveniently assume
that the power spectrum of the random boundary has the
Gaussian form

|F(M)|>=(021/Vm)exp(—AU?) (50

where [ denotes the correlation length. The spectrum is a
decreasing function of A and has a maximum at
1=1/V2A as a function of I. These properties determine
the certain effects of the rough boundary on the propaga-
ting characteristics of the modes.

We can calculate ¥, and w,,, from Egs. (46) and (50).
We have normalized the results by a factor a*/c? be-
cause they are directly proportlonal to the roughness o2
as long as it satisfies the condition 02 <<a? For conveni-
ence, a normalized coupling coefficient
apm =(a®/a*)w™/2) is defined for the nth and mth
modes.

Figure 2 shows the normalized damping coefficient of
the lowest-order mode (a/0?)y, as a function of the
normalized waveguide size ka /7 for the different values
of the correlation length kI. At the integer values of
ka /m, v, has an infinite damping in accordance with the
approximation Eq. (32), so that the approximation seems
to be invalid in these cases. For obtaining more accurate
results, Eq. (27) has to be solved directly. In addition,
from Eq. (49) it can be seen that the self-coupling
coefficient a,,(a,, ) has no effect on the coupling between
the mode intensities. It just brings out the loss of coher-
ence rather than the real damping of the average or
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FIG. 2. Normalized damping coefficient of the lowest-order
mode (a3/a?)y, versus normalized waveguide size ka/mw for
k1 =0.01,0.1, 1.0, 5.0, and 10.0.
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FIG. 3. Normalized damping coefficient of the lowest-order
mode (a’/0%)y, and (a®/0?)y,—a,, versus normalized
waveguide size ka /m for kI =1.0 and 5.0.

coherent field. Physically we may understand that it
stands for the energy exchange caused by the nonpro-
pagating modes while a wave is scattered into the “specu-
lar” direction from the rough boundary. In Fig. 3 we
compare (a’/a?)y, with (a/0?)y,;—a,, as a function of
ka /m for different values of kl. Their differences de-
crease as ka increases and kl decreases. As the modes
tend to cutoff (corresponding to where ka /7 tends to an
integer), the differences become larger, because in these
cases the number of the multiple scattering of unit length
from the rough boundary also increases rapidly (6, —0
in Fig. 1).

Figures 4-7 show the various a,,, as a function of the
normalized correlation length ! /a for the different values
of ka. We can see that the coupling coefficient of the
forward-forward modes a,,, is always larger than that of
the forward-backward modes «,_,,, because the
difference between their propagation constants in the

Normalized coupling coefficient a,_,

Normalized correlation length //a

FIG. 4. Normalized coupling coefficient of the lowest-order

forward-backward modes a,_,; versus normalized correlation

length I /a for ka =3.5, 5.0, 6.5, 9.5, 12.0, and 20.0.
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FIG. 5. Normalized coupling coefficient of the second-order
forward-backward modes a,_, versus normalized correlation
length ! /a for ka =6.5, 9.5, 12.0, and 20.0.

former is always smaller than that in the latter (the back-
ward mode has a negative propagation constant). As ka
increases, the coupling between two of any modes always
decreases. For a fixed ka, the coupling between the
higher-order modes is larger than that between the
lower-order modes. It is also seen that there is a value of
I /a giving out the largest coupling. This is due to the
form of the spectrum, Eq. (50). From Egs. (46) and (50),
the point at which the coupling coefficient «,,, arrives at
a maximum is / /a =0.707/(B, —B,, )a.

When 1 <ka <2, only the first-order modes (both the
forward and backward direction) can propagate in the

Normalized coupling coefficients

0.001 0.01 0.1 1
Normalized correlation length //a

FIG. 6. Normalized coupling coefficients of the first-order
forward to the second-order forward modes a;, and the first-
order forward to the second-order backward modes a,_, versus
normalized correlation length / /a for ka =6.5, 9.5, and 20.0.
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Normalized coupling coefficients

10
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FIG. 7. Same as in Fig. 6 but for the first-order to the third-
order modes a;; and a,_; and the second-order to the third-
order modes a,; and a,_; for ka =9.5 and 20.0.

waveguide (corresponding to the case N =1). To get a
feeling for the magnitude of the loss of a forward mode’s
intensity, expected due to the coupling or transformation
of the energy from the forward to backward mode caused
by the rough boundary in the case, we consider the worst
possible value a,_;=0.629 at //a =0.091 for ka =5.0
(see Fig. 4). By neglecting the recoupling or retransfor-
mation of the backward to forward mode [that is, Eq. (49)
reduces to dI,/dx =w!”1I,], we can roughly estimate
the values of the intensity losses of a forward-propagating
mode directly from the results of wlZ!. With the numer-
ical results given above, we obtain that the losses are 68.7
dB/km at the wavelength A,=1 cm (k =27/Ay so
a =0.8 cm for ka =5.0) and 6.87 dB/km at A;=10 cm
(a =8 cm), respectively, as the normalized rms roughness
0/a=0.01=1.0%. Conversely, a normalized rms
roughness o/a of 0.21% at A;=1 cm and 0.66% at
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Ao=10 cm will cause a loss of 3 dB/km. These values
show that even a very slight boundary roughness can give
rise to considerable influences on the propagation charac-
teristics of the guided modes.

In conclusion, we have proposed a way to treat the
scattering problem of the guided waves in a waveguide
with a statistically slight rough boundary, by applying
the stochastic functional approach. Some numerical ex-
amples are also given for illustration. It has been shown
that our approach gives more thorough results than those
given by the graphical or diagrammatic (Feynman dia-
grams) method [2,5,6]. Although the random rough
boundary is assumed to obey a homogeneous Gaussian
distribution statistically, it is not difficult to extend the
theory to other distributions; for example, the Poisson
distribution, where the Wiener-Charlier orthogonal ex-
pansion for the Poisson-Wiener functionals can be used
[31] instead of the Wiener-Hermite orthogonal expansion
used in this paper. Moreover, based on the present
theory, the influence of the rough boundary on the propa-
gation characteristics of pulse-modulated signals in a
waveguide can also be investigated from the intensity
transfer equation involving the time dependent term.
Research on the scattering of guided waves in an optical
fiber with a slightly rough boundary will also be done and
reported later. For optical fibers, the effects of the rough
boundary may be more important than in the case
presented in this paper, due to the presence of the radia-
tion modes and the leaky modes. On the other hand, the
problem in an optical fiber will become more complicated
because the hybrid boundary conditions rather than the
Dirichlet condition have to be used.

ACKNOWLEDGMENTS

One of the authors Zhi Liang Wang would like to ex-
press his deep gratitude to International Communication
Foundation of Japan for its financial support of his visit
in Japan. The authors are also grateful to Professor J.
Nakayama of Kyoto Institute of Technology for helpful
discussions.

(1] P. Beckmann and A. Spizzichino, The Scattering of Elec-
tromagnetic Waves from Rough Surfaces (Pergamon, New
York, 1963).

[2] F. G. Bass and I. M. Fuks, Wave Scattering from Statisti-
cally Rough Surfaces (Pergamon, Oxford, 1979).

[31J. A. Ogilvy, Theory of Wave Scattering from Random
Rough Surfaces (Hilger, Bristol, 1991).

[4] C. S. Clay, J. Acoust. Soc. Am. 36, 833 (1964).

[5] F. G. Bass, V. D. Freulicher, and I. M. Fuks, IEEE Trans.
Antennas Propag. AP-22, 278 (1974).

[6] F. G. Bass, V. D. Freulicher, and I. M. Fuks, IEEE Trans.
Antennas Propag. AP-22, 288 (1974).

[7] A. Ishimaru, Wave Propagation and Scattering in Random
Media (Academic, New York, 1978).

[8] I. Tolstoy, J. Acoust. Soc. Am. 73, 1192 (1983).

[9] L. Tolstoy, J. Acoust. Soc. Am. 75, 1 (1984).

[10] V. Twersky, J. Acoust. Soc. Am. 23, 336 (1951).

[11]J. A. DeSanto, Wave Motion 7, 307 (1985).

[12] A. R. Wenzel, J. Math. Phys. 15, 317 (1974).

[13]J. G. Watson and J. B. Keller, J. Acoust. Soc. Am. 75,
1705 (1984).

[14] H. Ogura, Phys. Rev. A 11, 942 (1975).

[15] H. Ogura and J. Nakayama, Phys. Rev. A 11, 957 (1975).

[16] H. Ogura and Y. Yoshida, Phys. Rev. A 14, 796 (1976).

[17]J. Nakayama, H. Ogura, and B. Matsumoto, Radio Sci.
15, 1049 (1980).

[18]J. Nakayama, H. Ogura, and M. Sakata, Radio Sci. 16,
831 (1981).

[19] J. Nakayama, Radio Sci. 17, 558 (1982).

[20] J. Nakayama, K. Mitzutani, and H. Ogura, J. Appl. Phys.
56, 1465 (1984).

[21] H. Ogura and N. Takahashi, J. Opt. Soc. Am. A 2, 2208
(1985).

[22] J. Nakayama, Radio Sci. 21, 707 (1986).



5016 HISANAO OGURA AND ZHI LIANG WANG 30

[23] H. Ogura and J. Nakayama, J. Math. Phys. 29, 851 (1988).

[24] H. Ogura, N. Takahashi, and M. Kuwahara, Wave
Motion 14, 273 (1991).

[25] H. Ogura, N. Takahashi, and M. Kuwahara, Waves Ran-
dom Media 1, 363 (1991).

[26] H. Ogura, N. Takahashi, and M. Kuwahara, J. Math.
Phys. 31, 61 (1990).

[27] K. Ito, Jpn. J. Math. 22, 63 (1952).

[28] N. Wiener, Nonlinear Problems in Random Theory (MIT,
Cambridge, MA, 1958).

[29] R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE
Press, New York, 1991), Chap. 2.

[30] H. Ogura, Theory of Stochastic Process (Corona, Tokyo,
1978) (in Japanese).

[31] H. Ogura, IEEE Trans. Inf. Theor. IT-18, 473 (1972).



